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A multilevel method for large-eddy simulation of turbulent compressible flows is
proposed. The method relies on the splitting of the turbulent flowfield into several
frequency bands in space and time, each band being associated to a specific com-
putational grid in physical space. This allows to take into account in a deterministic
way the information contained on finer grids. A subgrid model adapted to such a
decomposition—based on a generalization of the Germano’s identity to multilevel
decomposition—is also introduced. The approach is validated by several multilevel
simulations in a subsonic plane channel flow configuration for a low and a high value
of the Reynolds number, while reductions of the CPU times up to 80% are obtained.
(© 2001 Academic Press
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1. INTRODUCTION

During the past few decades, the numerical simulation of turbulent unsteady flows
seen a considerable gain of interest. Many industrial configurations, for example in
aeronautical field, deal with such flows, and the numerical tool appears to be a good"
to study and understand the involved physical phenomenons.

Nevertheless, unsteady numerical simulation of turbulent flows is still restricted to sim
configurations, because turbulence is a complex three-dimensionnal phenomenon in w
many different scales are present, ranging from the characteristic lengthscale of the prol
itself, to the Kolmogorov dissipation scale. Thus, the complete resolution of a turbulent ¢
involves very fine computation grids. That is why, even with the increasing capabilities
today’s computers, direct numerical simulations (DNS) of turbulent flows are still restrict
to low Reynolds numbers and simple geometries.

Large-eddy simulations (LES) allow the use of coarser meshes, by resolving directly o
the largest scales of the flow. They are based on a turbulent flowfield’s scale separa
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obtained by a frequency filtering of the Navier—Stokes equations. Large scales of the flow
directly resolved, while small scales, referred to as subgrid scales (SGS), are represe
through a statistical model. Such methods, because of the coarser meshes used, al
significant decrease in computational costs. Nevertheless, the use of LES on computati
grids that are too coarse generally provides poor results and depends heavily on the sul
model used. This is particulary true in the case of flows whose dynamics are driven
coherent structures associated with a wide range of frequencies, because they cann
described through a statistical model and need to be considered from a deterministic [
of view. Thus, such flows still require the use of fine meshes, leading to high computatio
costs. Thatis why it appears necessary to develop new approaches that allow one to dir
take into account small scales, while maintaining acceptable CPU times. Following this ic
we present here amultilevel strategy, which is based on a turbulent flowfield’s decomposi
into several frequency ranges that are treated separately.

Several authors have used such a strategy for incompressible flows simulations, anc
can distinguish different approaches. Dulstial.[9-11] and Debussctet al.[4] have used
a spectral approach, in which a multiscale decomposition is obtained by the truncation of
spectral series expansion of the solution. They derived a dynamic algorithm, the Dyna
MultiLevel methodology (DML), in which the truncation level is adjusted dynamically ir
time through estimates of the small-scale time derivatives. This algorithm is based mainly
the quasi-static approximation, which stipulates that the time variation of the small sce
can be neglected compared with the large scales one’s during a short integration ti
Simulations of incompressible isotropic three-dimensionnal homogeneous turbulence t
been performed that confirmed this hypothesis. Voke [38] has used the same approxima
but his approach is different in the sense that he worked in physical space. The s
separation was then obtained by the use of several nested overlapping grids of diffe
refinement degrees. To reduce the CPU times, a cycling strategy with V-cycles betweer
different grids was used, as in multigrid algorithms. In this approach, the integration tinr
on each grid were taken of the order of the smallest eddy turnover time on each grid, t
providing quite long integration times, while the quasi-static approximation is only valuat
for very short integration times. This is why this approach must be seen as a good wa
accelerate transition to turbulence and convergence to a quasi-steady state, rather tl
real unsteady method. Indeed, Voke defines the multimesh methaat d=a%t a cheap
way of turning pseudorandom initial velocities into something like real turbuleaod he
highlights the need of reducing the decorrelation between the large-scale and residual f
to reduce integration times on the fine level.

A different time integration strategy has been used by Sullateal. [37] and Boersma
et al. [1]. In this case, the quasi-static approximation is not necessary, since no cycl
strategy has been used. The reduction of the CPU times is obtained by the use of |
grid refinements. The simulation is performed on a coarse grid, and on local finer gr
which overlapp the coarse one, only in some critical regions of the flow. At each tin
step, the values of the coarse grid are updated in the overlapping regions by the us
fine-to-coarse interpolations. This strategy has been applied to the simulation of a th
dimensionnal incompressible planetary boundary-layer flow by Sulttah. [37] and to
an incompressible two-dimensionnal mixing-layer flow by Boerstnal. [1] and in both
cases provided a great improvement of the solution. Moreover, Suitvahshowed that
the use of a two-way coupling between the grids, based on a fluxes correction on the co
grid by using the fine grid information, improves the quality of the results. Another examg
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of local grid refinement applied to the simulation of turbulent flows is the DNS of separat
turbulent boundary layer performed by Manhetrl.[28].

A new trend in LES is the use of deconvolution methods, which appear in fact a:
type of multilevel method. In that case, two filtering levels are considered, and the gen
idea is to perform the computation at a coarse level, while the fine one is used to gene
some scales smaller than the resolved ones. These scales are then used to get an eva
of the subgrid terms on the coarse level. One can cite the velocity estimation mode
Domaradzki and Saiki [8] and its recent extension to physical space [7], in which the filtel
velocity field is deconvolved on a two times finer computational grid to generate nonlineau
some smaller scales that are used to compute the subgrid stress tensor. Recent v
based on an approximate deconvolution procedure have also been carried out by Stol.
Adams [36].

A last multilevel strategy is based on the use of simplified evolution equations for t
small (unresolved) scales of the flow, as in the multiscale variational method proposec
Hugueset al. [19], thus allowing the use of an exact equation for the coarse (resolve
scales.

Since spectral methods are still restricted to very simple geometrical cases, the me
presented in this paper is based on a classical finite volume approach, combined witt
use of different nested overlapping grids. Such a strategy allows us to take into acce
most of the scales in a deterministic way by the use of a fine grid, and thus to minim
parametrization errors, while a reduction of the CPU times is obtained through the us:
coarser grids with less points and greater time steps.

We can distinguish two points of view to the application of such a method. From t
physical point of view, the use of different refinement levels introduces different cutc
lengths and frequencies. This induces a continuous multilevel formalism generated
the different filtering levels. LES can be considered as a particular monolevel form of t
formalism. From a numerical point of view, a discrete formalism is generated by the differ
discretization levels and implies the use of discrete operators to allow communicat
between the different grids.

In this paper, a parallel between these two points of view will be drawn. The two fc
malisms will be introduced and presented as a general multilevel context, which can
seen under the multiresolution approach introduced by Harten [15, 16].

An adapted multilevel subgrid closure is also proposed in Section 1.3, in which t
interactions between the different frequency bands are taken into account in a determin
way, while the statistical part of the subgrid model is modified dynamically, allowin
interactions between distant frequency bands from the turbulent spectrum to be taken
account. All the developments are made in the case of compressible flows.

Deconvolution approaches as proposed by Stolz and Adams [36] or in the velocity €
mation procedure of Domaradzitial.[7, 8] use two different filtering levels and should be
classified as a particular two-level case of the present method. However, in these met
ologies, a fine level is only introduced to get an evaluation of the subgrid term at 1
computational level. The method proposed in this paper is a general multilevel appro:
which can be classified in several ways. It can be seen as: (i) a deconvolution approac
the computation is performed at the coarsest level, while finer ones are used to com
accurately the subgrid terms, and (ii) an acceleration technique to perform LES at lo
cost, when the computation is performed at the finest level, while coarser levels are use
reduce the CPU times. This is the point of view that has been retained in the present st
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At last, it can be interpreted as a more general combined approach if the original LES ¢
corresponds to an intermediary level.

A multilevel algorithm is thus introduced in Section 2.2, in which a reduction of the CP
times in comparison with a monolevel LES is searched through a cycling strategy base
a quasi-static approximation of small-scale dynamics.

The approach is assessed in Section 3 by several multilevel simulations in a subs
plane channel flow configuration, which appears as a good test case because of its neal
behavior that presents small coherent structures in the viscous sublayer. Moreover,
configuration has been studied by many authors, so that a reference database is avail:

2. CONTINUOUS FORMULATION

2.1. Context and Governing Equations

The proposed multilevel algorithm is basedMrdifferent filtering levels. Each of these
levelsn € [1, N]is characterized by a cutoff wavenumligiin spectral space, associated to
a cutoff Iengthscale\_n in physical space, thus defining a turbulence spectrum partitionnir
(cf. Fig. 1). These parameters allow to define a low-pass frequency@ﬂéor each level
n, which, in classical LES, is formally defined as a convolution product of any function ¢
space and time : (2 x R™) — IR, with a filter functionG,:

G 1) = (G * $)(X. t)=/QGn(x—s>¢<s,t>ds. )

Hereafter, we will takdy < - - - < ki, which impliesA® < --- < AN. That is to say, that
level 1 is the finest one, and that lewlis the coarsest one. The filtered variaﬂajefined
by (1) accounts only for the scales resolved by the filterwidlth i.e., associated with
wavenumberg& < k.

Considering the filtered variabbgl on the finest Ievel we obtain the filtered variables
at the leveln by the recursive applications of the fl|t€(r$ to () ) on the varlablep The
variables associated to the IeveMII so be notedzs where the notatiof) stands for the
recursive application of the fI|teI(S) to () ) as mentionned above, and Whére: Pt

Log(E(k))

]
Sl

=n+l

k n+l k n k n-1 k2 kl LOg(k)

FIG. 1. Turbulence spectrum partitioning.
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Thus, for anyn < [1, N, ¢ is defined by

?:Gn*Gn_l*-n*Gl*q&
=Gl x¢ (2

with, foranym e [1,n] : G}, = Gp x Gp_q % - - - x G

In the foIIOW|rr]19, the cutoff Iengthscanle associated to the filtering ope@fowill be
referred to asA . In the general case\ differs from A", since it is associated with a
multiple filtering of the solution rather than a single filtering. In the particular case whe
each primary filteiG,, is a Gaussian filter of widtA", we have in spectral space

(kAn)?

k2 Zlnzl(gl )2)

Gn(k) = exp(— 4

) = C/E\Q(k) = exp<—

and the filterG}] defined by (2) is then a Gaussian filter of widih = (Z,“:I(E')Z)%. As
in classical LES, commutativity of the ﬁlte@n with space and time derivatives will be
supposed, i.e.,

3" _ 99"
9% T oE 3

whereé =torx,i =1,2, 3.

One shows easily that (3) implies theu is also commuting with space and time
derivatives. To take into account the compressible character of the flow, we introduce m
weighted-filtered variables, as those introduced by Favre,

wherep denotes density.

Remark. The use of spectral sharp cutoff filters 18f, n € [1, N] is a very particular
case. The filter&,, are then defined in spectral space by

é\n(k)z {1 if |K| < Kn
0 else

Thus we have for angn € [1,n] : g™ = ¢", which implies thatb =¢", and alsoA" =

. In practice, sharp cutoff filters can only be used in spectral numerical algorithms. He
we present a very general formalism in which no particular form of the filters is assum
That is whyg " will be distinguished fromp_n.
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Applying successively the filter@l to ()" on the dimensionless Navier—Stokes equa
tions, we obtain the filtered equations for the lewgl

T) = _g + %(;ﬂ) - aaTj(Ti(jn)) — f1din (4)
h an p — ~ — ~
SED + o (B + B8 = o (3 8] o)) - 72 (Q) +a”) - ],

wheret istime,x (i =1, ..., 3) are the three spatial coordinatés,is Kronecker’s delta,
and where Einstein’s summation convention is adopted. The three velocity components
notedu; (i = 1, . 3), p is the pressuref; is a forcing term that will be described later
in the paper, andt is the total computable energy at the lemel

AN

an P 1=n
E=—_+2=
y—1+2p

fNxzn
a; G .

The filtered viscous stress tensgdl is computed as

= T 1zn
Ojj = a )(311 S<k8|1>

1/8u  du;
Si = 2<axJ + 8xi)

andu is the dynamic viscosity, given by Sutherland’s law for air,
s 1+C
To——,
T+C
whereT is the temperature ar@ = 1104/ To, with Ty being the reference temperature. At
the leveln, the filtered temperatur‘é is given by the ideal gas state law

where

w(T) =

whereMy is the reference Mach number apds the ratio of the specific heat§§/C,).
The filtered viscous heat flux vectQ is given by

=n ——n
=n w(T) oT
Q= m R
(y — HRe Pr M 9x;
whereReandPr are, respectively, the reference Reynolds and Prandtl numbers.
Following Vremaret al.[39] and Domaradzkét al. [5], all subgrid quantities resulting
from the nonlinearities ofij, Q;, andu are neglected. The nonlinearities of the convective
terms lead to two subgrid quantities: the subgrid stress teri8ogiven by

- 6 ®

). (6)
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2.2. Multilevel Representation of Variables

With the notation introduced in Section 2.1, the componants the velocity field can
be decomposed at the levebs

n-1
u =0+ sup+ul, 7
I—1

where ﬁi" represents the resolved velocity field at the lemgl.e., associated with the
wavenumberk < kp; ul = ﬁ: — G:H represents the velocity field frequency complemen
between the two levels+ 1 andl, i.e., corresponding to wavenumbers betwken and
ki; andu;’ are the subgrid scales unresolved even at the finest level of resolution. A sim
decomposition is obtained for the other aerodynamic quantities.

We then get a multilevel representation of the variables at thendeelthe velocity field

components
ML) = (&7, sut, ..., sul, u”). (8)

In a numerical simulation, only the filtered variables are known. Tiflemains unknown,
and the matched quantities are those at the finest level of resolution. A particular forn
the multilevel representation (8) for the filtered velocity field at the first level of resolutic
is written

ML(G!) = ML(E) = (@, surt, ..., sul). 9)

That means that the knowledge @Ff andsu?, ..., su! for anyn € [2, N] allows us to

recover the value of the finest resolved velocity fi@ltl by a simple summation of all the
components of its multilevel representation.

2.3. A Proposal for a Multilevel Subgrid Closure

The two subgrid terms™ andq™ resulting from the nonlinearity of the convective
terms of the Navier—Stokes equations cannot be computed directly because the quan
ui¢ ,wherep is eitheru; or T, remain unknown. Thus, these two terms need an appropria
modeling. Classical LES closures such as eddy-viscosity closures (Smagorinsky [35],
namic Smagorinsky [29], mixed-scale model [31]) and hybrid scale-similarity closures [
33, 41], model the action of the small scales corresponding to wavenumbers greater
the level cutoff number; i.ek > k, for level n (see Fig. 2a). In the multilevel case, the
small scales associated with wavenumlbgrs: k < kj are resolved on the finer levels, and
S0, it is neither necessary nor suitable to model them. In contrast, it can be of great inte
to take all these scales into account in a deterministic way rather than model them wi
statistical closure (see Fig. 2b).

We propose here a two-part dynamic parametrization well suited for a multilevel alc
rithm that makes it possible to account for the information corresponding to wavenumb
kn < k < kq inadeterministic way and to adapt dynamically the statistical part of the mod
This closure is based on a generalization of Germano’s identity [13] to the multilevel ca
and on an extension of hybrid scale-similarity models [41].
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Fileers Filters
Log(E(k)) Log(E(k))
n+|‘n/'/n-( \\z‘l ..+1‘/‘( \‘1
Resotved Modeled Resolved Known Modeled
Logk,,,Logk, Logk,, Logk, Logk, Log(k) Logk,, Logk, Logk,, Logk; Logk, Log(k)
(a) (b)

FIG. 2. “Classical’ models (a) and proposed model (b).

2.3.1. Germano’s identity generalizationWe introduce here a tensg@f™*?, coming
from a generalization of Germano’s procedure to the multilevel case:

n+1

n+1 +1) (=n=n ~(n+1) (n+1)

Thisterm has the advantage of being directly computable. Moreover, recalling the expres
of the subgrid tensor™,

(n) ;ﬁ(

Cll

;).

and using leve(n + 1) as a test level, we get the exact relation, equivalent to Germanc
identity in the monolevel case,

——(n+1)
n+1 n+1 (n
Lt =Y - (11)
By recurrence, we also get
n-1
o’ =Ghag’ + L]+ Gp LY. (12)
k=2

Relation (11) will be used hereafter in the parametrization®t
In a same manner, we introduce a vea@?*+? for the subgrid heat flux:

o _ o, (i) @)

—n

Recalling the expression of the subgrid heat flux veqﬂ?r: F”Cp(uiT — &7 ), we
get the exact relation

— (D
o) = Qi<n+l) —q" (14)

that will be used in the parametrizationgf’. By recurrence, we also get

n—-1
q” =Ghxq® + 9" + > 6p,, x 9. (15)
k=2



A MULTILEVEL ALGORITHM FOR LES 447

2.3.2. Subgrid stress-tensor modelingzor simplicity, the following developments use
the generalized central moments notation introduced by Germano [14]:

—-—~n

Tila,b] =ab —&"b .

Introducing the decomposition (7) of the velocity field in the expression of the subg

stress tensorl(J ), we get an extension of Germano’s consistent decomposition [12] to t

multilevel case,

A =L +C + R (16)
where
_ n-1 n-1
L =o"T; (G,”Jr 5u!>, <ﬁ?+25u']>]
I=1 1=1
o 5 n-1 3 n—1 (17)
Cl(ln) =p" <7B <u,n +Z8u!>,u/; + 7o (U], (ﬁrj‘ +Zau'j>]>
=1 —

. Li(]-”) is the resolvable part of(”) and appears as an extension of Bardina's scale
similarity model to the multilevel case. It represents the large-scales interaction and
addition, the interactions between large scales and the small scales resolved on the
levels and interactions between these “resolved subgrid scales” themselves. This pa
the subgrid stress tensor contains all the deterministic information that can be dire
computed.

. Ci(j“) is the cross-term tensor, which represents interactions between the large scale:
the unresolved subgrid scales and those between resolved and unresolved subgrid sc

° (m is the classical Reynolds stress tensor, which represents the interactions betv
the unresolved subgrid scales.

One can easily verify that each term of the decomposition (16) preserves the Galil
invariance property of the subgrid stress tensor.

We propose here to compute directly m@ term and thus to model only the cross- and
Reynolds terms of(”) Following Zanget al.[41], we propose to use a two-part dynamic
parametrization for the anisotropic partuéf)

() = (L) —2e 7 @RI .

where(¢ij)* = ¢ij — %¢kk8ij. The deterministic information of the subgrid stress tensc
contained inL; ™ will be computed directly, while the statistical Smagorinsky part will be
adapted through a dynamic evaluation of the coeﬁicﬁagﬂ)t. It will be evaluated using an
extension of Zangt al.'s procedure in which our generalization of Germano’s identity will
be used instead of the classical one.

Introducing the decomposition (7) in the expression of the subgrid stress tensor at
level (n + 1) that will be used as a test level, we obtain a decomposnmﬁ”é’i” similar

to the one obtained fo:r(”).

oY =L" +C" + R". (19)
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Note that{” (resp.C{{”, R\™) differs fromL """ (respC{*" R{""") since itis obtained
by using the decomposmon of the field at Ieveﬂmstead ofn + 1) into the expression of
the subgrid stress tensor at lewet 1. In particular, the expression fh’(m

[eE 8] o

From their definition, the two filter&} andG’l1+1 are self-similar [2], i.e., they have the
same shape, and only differ by their characteristic lengthscale. This allows us to consiste
use the same model for the two levalandn + 1, with the same coefficie@_”.

We thus modelz""")* in the same way ag")* by

() +1
Li" = o™V T

(&) = (L) — 2o A EET) . e

Tij
From the two expressions (18) and (21), and assumingt)é’iéts the same for all the band
[Knt1, Knl, the generalized Germano’s identity (11) gives

" ——(N+1)\ *
(Ei<jn+1)) _ (Li/Jgn)_Li(jm ) 2C(”)M(”)

ij - (22)

where

_ n+1

§(n+1) ‘ (é(]rwl)) (Kn)z(fsnl”(fsnj )*) }

The optimized value for the coeﬁ‘icieﬁﬂ‘) is obtained through a least-squares minimizatior
of the residual of relation (22), as proposed by Lilly [26]. We thus obtain

—(n+1)
(Ei(j““)—(L’(“) L(n) )) Mi(jn)

2M "M

1y, =0+D\2
Mi(jn) — o+ )[(A )

Cy’ =— (23)

Remark. Considering a classical eddy-viscosity parametrization®f i.e., imposing
L™ = L'™ = 0, we get the classical value 6" of the dynamic version of Smagorin-
sky’s model. Moreover, if we consider only the classical Germano’s decomposition of t
velocity field, i.e.,u; = ;' 4 u/, without taking into account the multilevel aspect, we get
the classical dynamic mixed Bardina—Smagorinsky model as in gaag[41].

2.3.3. Subgrid heat flux vector modelingrhe same dynamic mixed methodology, as
the one forr™, is used to parametrize the subgrid heat flux veqtdr. First, we have to
introduce the equivalent of the decomposition (7) for the temperature field. At thenlevel
it will be written as

n-1
T=T"4+3 6T +71, (24)
1=1

= =l+1
wheresT' =T - T i . Introducing the decomposition (7) of the velocity field and the
decomposition (24) of the temperature field in the expression of the subgrid heat flux ve«
qi(“), we get the decomposition

" =q"” +al’ +a¥, (25)
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where

ar’ = p"CpTalu. T"].

These three terms are, respectively, equivalert;f, C{[”, and R’ obtained in the de-
composition ofr”. The termg”, like L{i”, is directly computable and does not need any
parametrization.

We thus propose using a two-part dynamic parametrizatiaqﬁ”bnnder the form

_—n

— =n <N aT
6" = ail’ = P"CoKg" (A8 | (27)
1
As in the parametrization of{", the level(n + 1) is used as a test level. The subgrid hea
flux vectorqi(””) at this level is decomposed using the two decompositions () ahd
(24) of T as

g™ =al” +ac” +ay’. (28)

We then choose to mode|"*™ as

—(n+1)
M+ _ ) =(nil m (=n+Dy2 20+D 9T
47 = G — K (A8 2T
|

(29)

From the two expressions (27) and (29), and assuming«tﬁﬂ%ttis the same for the entire
band kn.1; kn], the identity (14) gives

oM = (o — o) — K", (30
where
— (1) ——n "
m® = ;D (E(n+1))2|§<n+l> s_:l _(5“)2<|§”|§_;2 ) ]

The optimized value forthe coefficiel&iﬁm is obtained through aleast-squares minimizatior
of the residual of relation (30). We thus obtain

——(n+1)
(n+1) /(n) (n) (n)
9 - (qu ) —q )mi

mi(n) mi(n)

KO = — ( (31)
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3. DISCRETE FORMULATION

Allthe formalism introduced in Section 1 can only find its place in a numerical simulatic
if an equivalent discrete formalism is introduced. This formalism, which can be seen &
particular case of the multiresolution representation of data introduced by Harten [15,
will be presented first. Then, it will be shown how such a formalism can be used in
multilevel algorithm.

3.1. Discrete Formalism

From a discrete point of view, the different filtering levels are obtained by the use
N nested overlapping discretization grids of the dom@&inreferred to ax2y, ..., Qn
hereafter, wher&; corresponds to the finest grid, afiq; to the coarsest one.

For any continuous functiop of space and time, the filtered varialgté on the finest
computational grid2; is defined by the application of a linear discretization operRtoon
the variablep. Here,2, is the fine discretization of the domat i.e.,D; : (22, R) —
F(Q4, R). The fine variablep! is thus defined as

¢t = Dig. (32)

The variablep! appears as the discrete equivalent of the continuous qu%tilyl other
words, as in classical LES, the continuous filBerremains unknown and the only effective
filtering is done by the space discretization.

Any variable on the coarser grids is then defined frotn by successive applications
of fine-to-coarse interpolation operators referred toeatriction operators as in standard
n=1nultigrid terminology. The variable" on thenth level, which is the discrete equivalent of
¢ , is thus defined as

¢n — R1I:]171¢n71
(R oRIS R
= Rig", (33)

with R} = R1_,R2,..R? : F(Q1, R) — F(Qn, R).

Similarily to RQ“, we define coarse-to-fine prediction operat@fs, from 7 (241, R)
onto F (2, IR), which allow us to recover an approximation @f on the grid2, from
the knowledge of"*! on the coarser grid2,,1. These operators will be referred to as
prolongationoperators. Applying successively the operafis! and Pn.1 ONg", we can
define the interpolation error on the gz, by

89" = ¢" — Pl Ry"e" = ¢" — PlLig" . (34)

Inthe LES context, we will consider that the application of the discrete restriction opera
R)_, onany variable is equivalent to the application of the continuous Iow—pasﬁﬂem
this variable. This is equivalent to saying that the only filtering on eachSgyits done by
the space discretization. The interpolation et can be then considered as the frequency
complement between the two leveleindn + 1.

For anyn € [2, N], the sequence of restriction and prolongation operd®ts and Poy1
allows us to get a multilevel representation/ot

ML(¢Y) = (9", 8¢" 71, ..., 5. (35)
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TABLE |
Equivalence Table between Continuous and Discrete Formalisms

Continuous formalism Discrete formalism
—q =1
QnE(') D;:Q—> Q
() ,nel2,N] Rl :Qn1— Qn,ne2,N]
—n
@) ,ne[2, N] R:T: qu,loRS:%ou-oR]Z,: Q — Qn,ne[zs N]

More generally, we have for amy € [1,n — 1]
ML(p™) = (@", 8¢" %, ..., 5¢™). (36)

Thus, for anyn € [2, N] and m € [1, n — 1], we can recover the value @™ from the
knowledge of its multilevel representation.

An equivalence between the continuous formalism and its discrete counterpart is s
merized in Table | and Fig. 3.

Remark. Forthe velocity field components and for the temperature field, Favre-filterir
is prescribed. Thus, we will use

RI((pp)h)
R 37

R (1) (37)
This definition is strictly equivalent to the continuous oazg': ﬁn/ﬁn.

3.2. Multilevel Algorithm

We propose in this section a numerical algorithm, which is based on the multile\
representation of the flow variablgs u; (i = 1,...,3), andT, and on the quasi-static

Continuous Formalism Discrete Formalism

FIG. 3. Correspondance between continuous and discrete formalisms.
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approximation [11]. The algorithm usé¢ nested overlapping grids, as mentionned pre:
viously. Starting from an initial flowfield on the finest grid;, we generate fields on
the coarser grids by successive applications of fine-to-coarse grid restriction opera
Rl (n=1,...,N —1). Thisis equivalent, as previously said, to successive applicatior
of low-pass frequency filters on the initial fine grid field.

On each grid?", n € [2, N], the computational variables are then

p" = R(ph
o Ri(p"ud)
U' = —mn 1y
RT (0
n_ RI(p'TYH
RT(o1)

At each fine-to-coarse restriction stéfd, — Qn+1) and for each flow variable, the

frequency complemenrit" is stored on theRflne griet, to keep the small scales of the flow
in memory.

The computation takes place on the coarse grids, and the resulting flowfield is then intel
lated to the fine grids with the coarse-to-fine grid prolongation oper&brs(n € [2, NJ).

At each prolongation step, the resulting fine flowfield is enriched with the frequency col
plement stored during the restriction step, kept frozen during the entire time of integrat
on the coarse grids.

The computation takes place as a succession of V-cycles, as in standard multigrid a
rithms. Figure 4 presents schematically the multilevel algorithm in frequential and physi
spaces, and one temporal integration cycle, in the case of a bidimensionnal three-level s
lation. The integration times on each grid, referred tagson Fig. 4, will be described later
in the paper. The freezing of the frequency complements is equivalent, from a physical p
of view, to the assumption that the small-scale variation on the@gidh € [1, N — 1],
can be neglected during time integration on the coarser §jglsm € [n + 1, N]. This

Log(E(k)
o
Log(k)
](1 "
A
h:‘ 1 2 1
d R 1\ P, ’

L A R} ‘ P} ‘

€2
t
At At Aty

FIG. 4. Schematic representation of the multilevel algorithm.
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is the quasi-static approximation. In [9-11], the authors have used the fact that since

small scales of the flow have a very different time behavior than the large ones, they ca
computed with less accuracy. In particular, estimate%{éf have been obtained, with the

result that
a n
<<] ¢
0 at

’

’aa¢“
0

ot

where|_|o is the norm associated with kinetic energy. Hence, it appears reasonable to ex
that the small-scale variation during a short integration time can be neglected compared
the large-scale ones.

On each prolongation step, the valugpdfat the timet + At is then evaluated as

P"(t + At) = P "t + AL) + 8" (1). (38)

One V-cycle is then defined by the following sequence.

1.n=1

2. Apply the numerical scheme #' during an integration timet,.

3. Restriction step: Ih < N compute the field at levat 4 1 by restriction:¢p"! =
RM+1(¢") and compute the frequency complement between laveladn + 1 at level
n: 8¢" = ¢" — P o RYH (@M.

4. fn<N,n<«<n+1landgoto?2.

5. Prolongation steg"~! = P11(¢") + s¢" 1.

6. fn>2,n<«n—-1landgotob5.

7. Goto 1.

4. APPLICATION: THE SUBSONIC CHANNEL FLOW

4.1. Problem Configuration

The test case that has been retained is the now well-known subsonic channel flow col
uration, which consists in a flow between two infinite isothermal walls. It has been stud
by many authors, both in the incompressible and compressible contexts. One can cite
incompressible DNS from Kimat al.[21] and Mosetet al.[30] and the compressible LES
by Lenormancet al.[24, 25].

This case is a typical example of a multiscale problem: Large structures dominate in
center of the channel, while the near-wall dynamics is driven by small streaky structure
the viscous sublayer. These streaks can only be captured in a deterministic way, and
very fine grids are required in the near-wall region.

The nominal Mach number valueli4, = 0.5. Two Reynolds number values, based on the
mean bulk velocityuy,, the mean bulk density,, the wall viscosity (T,,), and the channel
half-width L,/2, have been considerdde= 2800 andre= 11,000, corresponding to two
values of the skin-friction Reynolds numbre, , based on the wall shear velocity, of 180
and 590 respectively. The computations associated with these two cases will be referre
as LoNG-xxx and HiING-xxx respectively, wheMeis the number of level considered and
xxX is the subgrid model used.

The computational domain used for the low-Reynolds simulation is a box of dimensic

4

27 x 3 x 2 inthe respective, y, andz directions, wherex is the streamwise direction,

y is the spanwise one, ardis the wall-normal one. Uniform grid spacings are used ir
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the streamwise and spanwise directions, while a hyperbolic tangent law is used in
wall-normal one. For the high-Reynolds case, the domain dimensions are taken equi
2 x w x 2 in the respective, y, andz directions.

The computation is performed dd nested overlapping gridRs, ..., Qn, where for
anyn, each coarse grif,1 is defined from the finer on€, by keeping half the number
of points in each direction. The number of points used for the finest rfreshl) in the
respectivex, y, andz directions are 3% 64 x 128 for the low-Reynolds simulation and
52 x 120 x 128 for the high-Reynolds one. A finer mesh of dimensions<42 x 128
has also been used for the low-Reynolds case and is associated with the Lo3G-ML2
Lo4G-ML2 cases studied in Section 4.5.3, and one of dimension 984 x 128 has been
used for the Hi4G-ML2 case.

Periodic boundary conditions are used in the streamwise and spanwise directions, a
classical isothermal no-slip condition is used for wall boundaries.

4.2. Numerical Method

4.2.1. Numerical schemeA classical cell-centered finite-volume solver is used to solve
the filtered Navier—Stokes system (4) on each grid. This system is rewritten under
compact form

A

o + V. (Fe(V) + V- (F,(V,VV)) =0, (39)
whereV = (3", 507", 705" 505" E )T, and whereF, and F, are respectively the con-
vective and viscous fluxes. To ensure that the numerical scheme’s dissipation doesn’t cz
the effects of the subgrid model, no artificial dissipation has been used.

The divergence of the fluxes and the gradients of the numerical quantities are sim
evaluated using Green’s formulas on each cell. Nevertheless, to ensure the stability of
scheme, and in particular to reduce aliasing errors, the evaluation of the divergence of
numerical fluxes is done in a special way.

e A skew-symmetric formulation [23, 40] is used for the convective fluxes. This i
equivalent, with the one-dimensionnal notation introduced in Fig. 5, to computing t
convective quxFCi+% at the cell interface + % as Fc(\/i+%), instead of using the classical

formulation 3 (Fe(Vi) + Fe(Vi41)).

Fe i+172
T Convective fluxes
T
Via \I’ i Vis
| o | i | l |
f J [ I T |

Staggered
Control Volume

1 Viscous fluxes
VVian

Visl2

FIG. 5. Numerical fluxes evaluation.
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e The viscous fluxes are evaluated by the use of staggered cells. Gradiantaref
evaluated directly at cell interfaces by the application of Green’s formulas on stagge
control volumes. Then, the viscous fluxes 1 at the cell interface are computed directly
as F, (V. i+1 VV+1) instead of via the classical formulatlos}'(F M, VVi) + Fy(Viq1,
VVii).

Finally, a classical third-order compact Runge—Kutta scheme is used for time intec
tion [40].

Globally, the numerical scheme used here is second-order accurate in space and f
order accurate in time.

3.2.2. Gridtransferoperators.Several classical grid transfer operators have been testt
such as, for example, the bilinear operators used in standard AMR and multigrid algorith
Such operators, because of their quite high dissipation, lead to poor results. The oper
used in our simulations are simple differential operators, the coefficients of which are e
uated to get

, 9° 92 92

R+ — 7" 4 81( s Ayﬁﬁ + AZ 3 2) +O(AX3, AYS, AZ3)
92 92

Pl =7Zd"+e <A o2+ Ay”aTF + Aznaz) +0(Aax3, AY3, AZD),

whereZd" is the identity operator at the level andAX,, Ay,, andAz, are the space steps
at this level in the respective y, andz directions.

These operators are obtained by a three-dimensionnal extension of the stencils pres
on Fig. 6, which shows the coefficients associated with each point from the fine grid fielc
the restriction step (a) and from the coarse grid field in the prolongation step (b). A class
volume ponderation is also used for nonuniform meshes.

The coefficients obtained in the three-dimensionnal case are

- 1,1
A=z5+38

- 1.1 _1_3
a=—gtsza B=1-3e
1 3 and s
bza_égl C:_3_2+7182
-1
D=
a a A b
N X Fine Grid Values . .
a b b a ®  Coarse Grid Values
* * ) X 0 X 4 %)
g ... Targeted Values C B % A
a b b a . o
ol R N B [ ] Fine Grid Cells x | x
a a .
c
X X D Coarse Grid Cells C
@

(b)

FIG. 6. Restriction (a) and prolongation (b) stencils.
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To get the maximal accuracy on the global oper&fr, o R1+1, we chose to take, = —e;.
Our best results were obtained with = —s; = 0. In this case, both,'}“, Py, and

Pa10 R,'}*l are third-order accurate. Simulations with other values,@&nde, have been
performed, such as, for example, with= —g, = %, which leads to a well-known simple
operatorRI+ (with b = % anda = 0) but provides quite poor results because of the globe

scheme’s behavior is too dissipative and thus cancels the small-scale contribution. In
case,RM1 is equivalent to

n 1 2 82 2 82 2 82 3 3 3
7d" + 3 (Axnw + Ayna—y2 + Aznﬁ> + O(AXS, Ays, AZ),
which acts as a second-order dissipative operator. However, the ¢hoic® leads to a
nondissipative operator in which the truncation error is reduced to a third-order dispers
term.

A consistent approach for relating fine and coarse variables in large-eddy simulatit
with AMR has been proposed recently by Cook [3], but this has not been tested here.

4.2.3. Subgrid terms computationBecause of the complexity of the expression of the
scale-similarity terms in the subgrid quantities parametrization, some approximations
needed to compute them. We find in their continuous expression some terms invol
operators likeG! « G]. These terms will be evaluated in the discrete case by using tt
operatorF, R} instead, wheré- is a classical discrete filter with coefficierggg{l; 22, 1],
resulting from the tensorial product in the homogeneous directions of the flow of the 1
filters F, andFy:

1
Fx(¢) = ﬁ(‘bi—l,j,k + 22¢i j k + Git1jk)

1
Fy(¢) = ﬂ(ﬁbi,j—l.k + 22¢; j k + bi,j+1.k)
= F(¢) = Fy(Fx(9)).

The discrete filte thus defined is the discrete equivalent of a Gaussian or box filter
length A" [32]. Forg andy equal tod", S su', T, or 1 8 T', we will then use the
approximations

4.3. Forcing Term

Because of the periodic boundary condition used in the streamwise direction, the c
putation needs the introduction of a forcing term in the filtered Navier—Stokes equations
ensure mass flow rate conservation and convergence to a quasi-steady state. This is the
noted f; in Section 2.1. This term is computed following the numerical procedure propos
by Lenormancet al.[24, 25].

The driving term is then updated at each time gtdgy

At
P =P+ m[a(QpH — Qo) + B(Q" — Qo)l. (40)
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whereQq is the targeted mass flow ra®? is the mass flow rate at time stgpandQP+!
is its first-order prediction at time stgp+ 1, given by

2L, d(uf)
PH— QP — At |LyL,fP+ Epu—1
Q Q N N

] ; (41)
z=0.

where(.)xy denotes averaging in they plane. The two parametexsandp are taken equal
to be 2 At and—0.2/ At respectively to ensure stability [24, 25].

4.4, Initial Conditions

The simulation is initiated from laminar parabolic profiles perturbed with random nois
The initial dimensionless profiles are given by

pt=0=1+s¢
ut =0,2 = Ul — (z— 1?1+ se)
v(t=0,2) =se (42)
w(t =0,2) =se¢
y—1

Tt=02 =1+ PrM2UZ[1 — (z— 1),
wheree is a random number betweerll and 1,U. = 1.5 is the dimensionless centerline
streamwise velocity, anslis taken equal to 0.1.

4.5. Numerical Tests

For both the two Reynolds cases considered here, several computations have beel
formed. First, classical monolevel LES using the dynamic Smagorinsky closure have b
carried out on the finest grid (runs Lo1G-dyn and Hi1G-dyn). The results of these sin
lations are used as reference results in the following to evaluate the multilevel proced
The importance of an adapted subgrid closure on the coarse levels is studied by two-|
simulations using different types of closures in Section 4.5.1. The influence of the cycl
strategy is then studied by two-level simulations with variable coarse-grid integration til
in Section 4.5.2. Then, the ability of the multilevel method to deal with more levels
evaluated in Section 4.5.3 by three- and four-level simulations. Finally, a more detalil
analysis of the multilevel subgrid closure is performedalgriori tests in Section 4.5.4.

All the simulations use integration time steps evaluated with a CFL condition of 0.95
each grid. Since compressibility effects remain very small (maximum variation of density
4% close to the walls), the results are also compared to those obtained byaViaisi&0] in
theirincompressible DNS. In all the computational cases, numerical instabilities inducec
intense negative values of the coefficiél{g?) are classicaly prevented by plane-averaging
in the homogeneous directions.

Tables Il and Ill present, for the low- and high-Reynolds cases respectively, the differ
simulation parameters, including the number of grids used, grid spacings in wall units,
subgrid model used, and the integrated friction Reynolds number and velocity. The C
times, nondimensionnalized by the time required for the monolevel simulation, are &
presented.
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Simulation Parameters and Integrated Values for the Low-Reynolds Case
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TABLE Il

Case Grid  Ax* Ayt AZH SGS model Re u, tepu
Lo1G-dyn 1 35 12 1 Dyn. Smag. 185 B/x102 1
Lo2G-dyn 1 35 12 1 Dyn. Smag. 177 .06 x 1072 0.41

2 70 24 2
Lo2G-ML 1 35 12 1 Multilevel
2 70 24 2
(a) At, = 2AY 179.5 62x 102 045
(b) At = Ay 182.2  623x 102  0.675
(c) At, = 4At, 180.5 617x102 0.3
L02G-MLnoS 1 35 12 1 Multilevel 179.3 .69x 102  0.43
2 70 24 2 cP®=0
L03G-ML2 1 30 8 0.75 Multilevel 180.5 @1x102  0.48
2 60 16 15
3 120 32 3.2
Lo4G-ML2 1 30 8 0.75 Multilevel 181.7 @4x102% 0.23
2 60 16 1.5
3 120 32 3.2
4 240 64 6.6
DNS 1 17.7 59  0.054 — 1785 . ®x 102 —
TABLE llI
Simulation Parameters and Integrated Values for the High-Reynolds Case

Case Grid  Ax* Ay* AZH SGS model Re u, tepu
Hi1G-dyn 1 71 15.4 1 Dyn.Smag. 594 25102 1
Hi2G-dyn 1 71 15.4 1 Dyn.Smag. 581 05x 102 041

2 142 30.8 2
Hi2G-ML 1 71 15.4 1 Multilevel
2 142 30.8 2
(@) At, = 2AY 589 517x 102 0.5
(b) At = Al 599 524x 102  0.675
(€) Aty =4AY 588 516x 102 0.3
Hi2G-MLnoS 1 71 15.4 1 Multilevel 594 Bx102 043
2 142 308 2 cP=0
Hi3G-ML 1 71 15.4 1 Multilevel 593 2x102 021
2 142 30.8 2
3 284 61.6 4.4
Hi3G-ML2 1 40 10 0.75 Multilevel 603 B8x 102  1.25
2 80 20 15
3 160 40 3.4
Hi4G-ML2 1 40 10 0.75 Multilevel 604 B29x 1072 0.6
2 80 20 1.5
3 160 40 3.4
4 320 80 8.2
DNS 1 9.7 48  0.044 — 587.2 % x 1072 —
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4.5.1. Influence of the subgrid closurdn this section, the influence of the subgrid
closure used on the coarse levels is studied by two-level simulatdns 2), performed
with one time step on each grid per V-cycle (i.At, = 2At;). The results of two-level
simulations using respectively the classical dynamic Smagorinsky closure on both the
levels (runs Lo2G-dyn and Hi2G-dyn) and the multilevel closure (runs Lo2G-ML(a) ar
Hi2G-ML(a)) are compared to those from the fine reference LES (runs Lo1G-dyn and Hil
dyn) and to the DNS results from Mosetral. [30]. Since the dynamic Smagorinsky term
present in the multilevel closure on the coarse levels accounts only for nonlocal interact
between distant wavenumbers of the spectrum, it appears interesting to study the e
of removing this term on the coarse levels. Indeed, following the results of the works
Kerr et al. [20], Domaradzkiet al. [6], and Kraichnan [22], the main part of the energy
transfer is due to local interactions between neighboring wavenumbers. This is the b
of all deconvolution approaches in which an approximate reconstruction of scales half
size of the resolved ones is performed to compute the model. The runs Lo2G-MLnhoS
Hi2G-MLnoS have thus been performed to see whether the dynamic Smagorinsky teri
necessary on the coarse levels, by set@@ﬁ to zero on the coarse grid.

First, it is seen from Tables Il and Il that all the LES performed in this section provic
skin-friction parameters in good agreement with the reference DNS results. The skin-frict
velocity is slightly underestimated, due to the second-order-accurate scheme used and
pressibility effects, but the error with the DNS values remains lower than 6% in all cas
The computed skin-friction Reynolds numbers, however, are very close to the targeted [
value. While the computed skin-friction parameters vary little from one two-level simulatic
to another, slightly better results are obtained in the case of two-level simulations using
multilevel closure (runs Lo2G-ML(a), Lo2G-MLnoS, Hi2G-ML(a), and Hi2G-MLnoS).

One can see how the use of two nested grids reduces the CPU times, with the 1
presented in the last column. As excepted, the multilevel closure is a little more expen:
than the classical one, with a 10% increase in CPU time. This is due to the larger amour
operations required to compute the scale-similarity terms in the multilevel closure, which
not present in the classical dynamic eddy-viscosity closure. However, the CPU gain fa
remains very interesting and greater than two in all the two-level cases considered her

Figure 7 compares, in wall units, the mean plane-averaged streamwise velocity pro
obtained in each case for the low-Reynolds simulation with the DNS results and the th
retical logarithmic law. One can see that the use of the multilevel algorithm with a classi
SGS model provides poor results (run Lo2G-dyn), which are quite equivalent to those
tained in a coarse simulation, both in the linear and logarithmic zones. However, the
of the multilevel SGS closure, both with and without the dynamic Smagorinsky part (ru
Lo2G-ML(a) and Lo2G-MLnoS) provides better results, presenting only small discrepse
cies from those of the fine monolevel LES (run Lo1G-dyn) or the DNS. Both the linear a
logarithmic zones are well captured.

The mean plane-averaged streamwise velocity profiles obtained in the high-Reync
case are plotted on Fig. 8. We see here the effect of the quite coarse mesh used fc
second-order-accurate numerical scheme, resulting in a difference between the comy
velocity field by LES and the DNS results. These computations appear unable to get
correct slope in the logarithmic zone. This is a classical effect of any second-order-accu
scheme, which is also observed by other authors (see the numerical studies of Kravch
and Moin [23] and of Shah and Ferziger [34] for instance). Nevertheless, we can see a
that the use of the multilevel SGS closure (runs Hi2G-ML(a) and Hi2G-MLnoS) leads
results in very good agreement with the fine monolevel ones (run HilG-dyn), while the t
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FIG.7. Mean streamwise velocity profiles—low Reynolds ca3eDNS Moseret al., @: Lo1G-dyn, ——-—:
Lo2G-dyn, —: Lo2G-ML(a), ——: Lo2G-MLnoS,--: Wall laws.

of a classical SGS model on both the two levels (run Hi2G-dyn) leads to some differen
in the logarithmic zone.

Figure 9 presents, in wall units, the resolved plane-averaged turbulent kinetic ene
profiles k) obtained in each case for the low-Reynolds simulations. The same rema
as for the mean profiles can be made. The two-level simulation with the standard dyna
Smagorinsky model (run Lo2G-dyn) exhibits a general coarse simulation behavior. The p
value is obtained at* = 18, and its amplitude is very high compared with the monoleve
LES (run Lo1G-dyn) and DNS results. The use of the multilevel SGS closure (runs Lo2
ML(a) and Lo2G-MLnoS) provides a great improvement of the results: The peak val
is obtained atz™ = 14, as in the fine monolevel LES and in the DNS. The amplitude c
the peak value is a little overestimated in the case where no dynamic Smagorinsky ter
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FIG.8. Mean streamwise velocity profiles—high Reynolds c&seDNS Moseret al., ®: Hi1G-dyn, ——-—:
Hi2G-dyn, —: Hi2G-ML(a), ——: Hi2G-MLnoS,---: Wall laws.
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FIG.9. Resolved turbulent kinetic energy profiles—low Reynolds cas®NS Moseret al., ®: Lo1G-dyn,
—-—-—: L02G-dyn, —: L02G-ML(a), ——: Lo2G-MLnoS.

present on the coarse level, while a little less turbulent energy is present in the core re
of the channel. This can be interpreted as an underdissipative behavior of the model ol
coarse grid in the buffer zone close to the wall. However, the differences between the re:
of runs Lo2G-ML(a) and Lo2G-MLnoS remain small.

The plane-averaged turbulent kinetic energy profiles obtained in the high-Reynolds s
ulations are presented on Fig. 10. Again, the effects of the second-order scheme are Vit
by an overestimation of the peak turbulent kinetic energy value. Nevertheless, while all
two-level LES performed tend to overestimate the peak value, one can see that the re
obtained with the multilevel SGS closure are better than those obtained with the dyna
Smagorinsky model on the two grids (run Hi2G-dyn), and again they are in very good agr
ment with the fine monolevel LES (run Hi1lG-dyn). This can be seen for both the amplitu

20 40 60 80 100 120 140 160 180 200
z

FIG.10. Resolved turbulentkinetic energy profiles—high Reynolds casBNS Moseret al., ®: HilG-dyn,
—.—— Hi2G-dyn, —: Hi2G-ML(a), ——: Hi2G-MLnoS.
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of the peak value and its position'( = 17 for the DNSz" = 18 for the Hi1G-dyn, Hi2G-
ML(a), and Hi2G-MLnoS simulations, and"™ = 21 for Hi2G-dyn). Again some small
differences are seen between the two multilevel simulations with or without the dynan
Smagorinsky part on the coarse level, the Hi2G-MLnoS giving again a little less turbule
energy in the core region and a slightly higher peak value.

All the results presented in this section tend to demonstrate that the use of a well-su
SGS closure is required in the multilevel case. This is because most of the integration t
is performed on the coarsest grid. Hence, the global results are strongly influenced by
coarse-grid simulation. The model proposed in Section 2.3 allows us to take into accc
the fine-grid information even on the coarse grid and thus minimize the effects of the coa
grid time integration in the multilevel algorithm. The results obtained with this model i
the multilevel simulations are greatly improved and tend to show the efficiency of sucl
closure, which allows us to recover the results of a fine monolevel LES at lower cost.

It is globally observed that the use of the dynamic Smagorinsky term on the coarse le
has only a small influence on the final results. However, this term provides some additic
dissipation, as will be shown in Section 4.5.4.

4.5.2. Influence of coarse grid integration time3.he multilevel cycling strategy used
in this study relies on the quasi-static approximation of the smallest resolved scales. Tl
it is interesting to study the effect of increasing or reducing the time during which th
approximationisimposed, that is, the time interval during which coarse-grid time integrati
is performed. In this section, this point is studied by performing two-level simulations wi
different integration times on the coarse level. Runs Lo2G-ML(b) and Hi2G-ML(b) hav
been performed, by reducing the integration time on the coarse level by a factor of twc
comparison with the runs Lo2G-ML(a) and Hi2G-ML(a), which use one time step on ea
grid per V-cycle. In contrast, runs Lo2G-ML(c) and Hi2G-ML(c) have been performec
by increasing this time by a factor of two on the coarse level in comparison with rul
Lo2G-ML(a) and Hi2G-ML(a).

From Figs. 11 and 13, presenting respectively the mean streamwise velocity and reso
turbulent kinetic energy profiles obtained in the low-Reynolds case, it is seen that
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FIG. 11. Mean streamwise velocity profiles—low Reynolds cdseDNS Moseret al., ®: Lo1G-dyn, —:
Lo2G-ML(a), ———: Lo2G-ML(b), — — —:L02G-ML(c), - : Wall laws.
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FIG. 12. Mean streamwise velocity profiles—high Reynolds c&3eDNS Moseret al., @: Hi1G-dyn, —:
Hi2G-ML(a), ——-: Hi2G-ML(b), — — —:Hi2G-ML(c), - : Wall laws.

influence ofAt, on the final results remains small. Only small differences in the mee
profiles are seen for the run Lo2G-ML(c) performed with a greater valugtgfin which

a slightly smaller value of the skin-friction velocity used for normalization is obtained (st
Table I1). However, reducingit, does notimprove the results since they are already in goc
agreement with the reference simulations witdp = At;.

For the high-Reynolds case, it is first seen from Figs. 12 and 14, showing the m
streamwise velocity and resolved turbulent kinetic energy profiles, that the results obtai
in the case Hi2G-ML(c) are very similar to those obtained in the case Hi2G-ML(a). Th
means that increasinggt, by a factor of two does not have any influence on the results i
this case. Only small differences in the mean streamwise velocity profiles are seen in
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FIG.13. Resolved turbulent kinetic energy profiles—low Reynolds cas@&NS Mosert al., ®: Lo1G-dyn,
—: L02G-ML(a), ———: L02G-ML(b), — — —L02G-ML(c).
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FIG.14. Resolved turbulentkinetic energy profiles—high Reynolds casBNS Moseret al., ®: HilG-dyn,
—: Hi2G-ML(a), ———: Hi2G-ML(b), — — —Hi2G-ML(c).

core region of the channel for the case Hi2G-ML(b), owing to a slightly higher value of tt
skin-friction velocity obtained in this case. However, the results of the three Hi2G-ML(;
runs are very similar.

4.5.3. Influence of the number of level3he multilevel formalism introduced in the
theoretical part of this work is very general and is written for an unlimited number of leve
However, itis clear that the algorithm is limited in practice to a reasonable number of leve
to keep the number of computational points high enough so that an LES can be perfori
at each level of resolution.

In this section, the ability of the multilevel algorithm to deal with more than two levels i
shown by three- and four-level computations. Again, one time step per V-cycle is perform
on each grid, leading tat, = 2At;, Atz = 4At;, andAt, = 8At;.

In the low-Reynolds-number case, a finer grid is introduced to carry out these com
tations (see Section 4.1 for description). Three-level (run Lo3G-ML2) and four-level (rt
Lo4G-ML2) computations using the multilevel model have been performed with this ne
mesh resolution.

In the high-Reynolds case, a three-level computation has been performed using the o
nal mesh (run Hi3G-ML). To see if the use of a finer grid can improve the results, three- ¢
four-level simulations have also been carried out with the use of a very fine grid includi
more than two million points, which is also described in Section 4.1 (runs Hi3G-ML2 ar
Hi4G-ML2).

All the computation parameters are summarized in Tables Il and Ill. First, it is observ
that all these simulations give skin-friction parameters in very good agreement with |
monolevel LES and the DNS, and this for both the two Reynolds humbers considered h
For the low-Reynolds case, it is observed that even with a finer mesh used, the multile
computations considered here took at most half the time needed for the run Lo1G-dyn.
the high-Reynolds case, it is striking that the CPU time reduction reaches a factor of ne
five for the Hi3G-ML run. The computations performed with the finer mesh (runs Hi3C
ML2 and Hi4G-ML2) give a skin-friction velocity value in very good agreement with the
DNS ones, while the skin-friction Reynolds number is slightly overestimated, because of
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FIG. 15. Mean streamwise velocity profiles—low Reynolds caseDNS Moseret al, ®: Lo1G-dyn, —:
Lo2G-ML(a), — — —:L0o3G-ML2, ———: Lo4G-ML2, s : Wall laws.

small variation of density at the wall, which is not taken into account in the incompressil
DNS.

Figure 15 shows the mean streamwise velocity profiles obtained for the low-Reync
case, in wall units. All the multilevel simulations considered here agree well with the fi
LolG-dynreference result. From Fig. 17, which presents the mean resolved turbulent kin
energy profiles, itis seen that the three-level run Lo3G-ML2 is in very good good agreem
with the two-level Lo2G-ML(a) and also the fine Lo1G-dyn reference simulation. The fol
level run Lo4G-ML2 gives slightly different results: The peak value is smaller than in tt
other LES cases, and more turbulent energy is present in the core region. However
agreement with the reference results remains quite good.

Figure 16 shows the mean streamwise velocity profiles obtained for the high-Reync
case. Here, the three-level run Hi3G-ML, even while performed with the original mes

22
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FIG. 16. Mean streamwise velocity profiles—high Reynolds c&3eDNS Moseret al., ®: HilG-dyn, —:
Hi2G-ML(a), — — —Hi3G-ML, -------: Hi3G-ML2, ———: Hi4G-ML2, - : Wall laws.
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FIG.17. Resolved turbulentkinetic energy profiles—low Reynolds cas@&NS Moseret al., ®: Lo1G-dyn,
—: Lo2G-ML(a), — — —:L03G-ML2, ———: Lo4G-ML2.

gives the same results as the HilG-dyn and Hi2G-ML runs. The same comment car
made for the mean resolved turbulent kinetic energy profiles plotted on Fig. 18, where |
a little less energy in the core region of the flow is seen.

For runs Hi3G-ML2 and Hi4G-ML2, which are performed with finer grids, an improve
ment of the results is obtained in comparison with the results obtained with the original gri
In these cases, the logarithmic zone of the flow is better described, and the resolved turbi
kinetic energy peak value is decreased in comparison with the other LES performed h
Some discrepancies with the DNS are still present, due to the second-order-accurate sc!
used, butitis shown that the results are improved in comparison with the Hi1G-dyn run, w
acceptable CPU time ratios (1.25 and 0.6 for runs Hi3G-ML2 and Hi4G-ML2, respectivel
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FIG.18. Resolved turbulentkinetic energy profiles—high Reynolds casBNS Moseret al., ®: HilG-dyn,
—: Hi2G-ML(a), — — —Hi3G-ML, -------: Hi3G-ML2, ———: Hi4G-ML2.
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FIG. 19. Instantaneous streaks visualizations in the (a) Lo4G-ML2 and (b) Hi4G-ML2 runs. Dark and pe
surfaces indicate positive and negative streamwise vorticity contours, respectively.

For all the three- and four-level simulations presented here, it should be noted that
streaks are very poorly or even not resolved at all on the coarsest grid, since the resoll
is too coarse (see Tables Il and Ill). However, three-dimensional visualizations of so
iso-streamwise-vorticity surfaces of the flow highlight the fact that these structures
well represented by the multilevel computations (see Fig. 19 for the four-level simulati
results). This indicates that these structures are contained in the frequency complen
between the different levels and demonstrates the ability of capturing some very small I¢
phenomena with a multilevel approach.

4.5.4. Multilevel closure analysis.In this section, am priori analysis of the multilevel
subgrid model is performed for the low-Reynolds number simulation. The results, extrac
from the two-level LES performed with the multilevel closure (run Lo2G-ML(a)) are com
pared to previous subgrid term analysis performed by Domaradzii [8] and Horiuti
etal.[17] using filtered DNS results. Notice that no time-averaging has been performed h

At each level, the expression of the subgrid stress tensor can be split into two part
scale-similarity part. ™ and a Smagorinsky pag",

(") = (L) -2v2"(§))", (43)
S
wherev{gs= (Cé”)(Z“)2|:Sn|) is generally referred to as subgrid viscosity.

For anyn, the scale-similarity tern. ™ can be split into two term& (™ andLy". The
tensorL(ln) is identical to the classical Bardina scale-similarity term, involving product
between the components of the field resolved at the lewslly (ﬁi”), while L(Z”) contains
products involving the components of the field resolved on the finer IeE’I‘gf(au}) and
accounts for interactions between the two frequency bands]J@nd [k, ki] from the
spectrum. From its definition, it is evident thaf) = 0 on the finest grich = 1.

The contributions of each of the terng", L{”, and LS” to the global SGS stress
tensor are plotted in wall units in Figs. 20—-23, which present their plane-averaged tre
free (xx) and(x2) components for the fine and the coarse grids. One can see that the i
part of the SGS tensor is due to the scale-similarity térimwhile the other terms are
quite negligible. This conclusion has been drawn by several auth@®iiori testings
of DNS data which have highlighted the high correlation coefficient existing between t
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FIG. 20. SGS tensor trace-freg; component profiles—fine grid.

scale-similarity terrmi; and the real SGS tenser Neverthelessa posterioritestings have
shown that the Smagorinsky term is important in providing sufficient SGS dissipation ir
numerical simulation [27]. Notice also that, as expected, the amplitude of the compone
of the SGS tensor is greater on the coarse grid, showing that more subgrid scales are pr
and need to be modeled.

Itis noticed that_, remains negative, but no conclusion about this can be drawn direct
since only its effect in terms of dissipation can be interpreted.

The dissipation profiles for the fine (resp. coarse) grid are plotted in wall units in Figs.
(resp. 25), 26 (resp. 27), and 28 (resp. 29), showing respectively thesptarvard ¢ ),
and backwardg") plane-averaged SGS dissipations provided by each of the @&ynis,
andL.,.

FIG. 21. SGS tensor trace-freg; component profiles—coarse grid.
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FIG. 23. SGS tensot,;; component profiles—coarse grid.
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FIG. 24. SGS dissipation profiles—fine grid.
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<e>

FIG. 25. SGS dissipation profiles—coarse grid.

These three terms are computed as

e = — (n)SJ
N 1( +lel)
e = —(& &
2
1
et = 5(8 — lel).

Figures 24 and 25 reveal that the main SGS dissipation is due to the Bardina te
while the Smagorinsky term provides some nonnegligible additional dissipation. One ¢
see from Fig. 25 that the additional telm provides a small general backscatter effect
(negative dissipation), but this seems to be quite negligible compared with the other t
contributions. The global dissipation peak value is obtained at 12, which is in good
agreement with filtered DNS results [8].

Itis to be noted here that the forward dissipation provided by the dynamic Smagorin:
term on the coarse grid represents between approximately 10 and 20% of the total
dissipation. This confirms the studies of Ketral.[20] and Domaradzkét al. [6], which
have highlighted the fact that the nonlocal energy transfers are one order of magnitude Ic
than the total one. Moreover, this term does not provide any backscatter effect, as ca
seen on Figs. 28 and 29.

These figures show that local backscatter effects are taken into account by the two sc
similarity termsL; andL,. These two terms are able to take into account the interactiol
of scales close to the cutoff lengthscale, and thus they exhibit some local backscatter |
nomena. This is a well-known particularity of scale-similarity models, in which the SG
stress-tensor axis are not aligned with those of the strain-rate tensor.

Moreover, Figs. 26—29 show that the total forward (resp. backward) subgrid dissipat
peak value is obtained at ~ 14 (respz™ ~ 27), which is again in quite good agreement
with filtered DNS results [17] in which it is predicted zt ~ 12 (respz™ ~ 25).

While the contribution of the ternh., to the global subgrid dissipation seems to be
negligible, Fig. 29 shows that it is not the case for its contribution to local backwa
dissipation, which appears to be at least as important as that of the classical Bardiba tern
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FIG. 27. Forward SGS dissipation profiles—coarse grid.
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FIG. 28. Backward SGS dissipation profiles—fine grid.
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FIG. 29. Backward SGS dissipation profiles—coarse grid.

5. CONCLUSIONS

A multilevel algorithm, close to the multigrid methodology, and its application to th
large-eddy simulation of turbulent compressible flows has been proposed. The use of se
nested computational grids has been presented from a frequential point of view, with
resultthat, under the quasi-static approximation, the high-frequency part of the flow resol
on the finest grid can be used directly for the subgrid term computation on the coarse gt
This is achieved by way of a two-part mixed model in which the scale-similarity Bardir
part is modified on the coarse grids by the use of a multilevel decomposition of the fl
variables, while a dynamic Smagorinsky part is added to take into account the interacti
of the resolved frequencies with the unresolved ones.

It has been shown that the use of a suited multilevel closure is required, by simulati
performed in a plane channel flow configuration, for two values of the Reynolds numk
Numerical simulations conducted in both cases show that the coarse-grid time integra
has a strong influence on the results and that the use of a classical statistical subgrid
leads to poor results. However, the proposed multilevel closure allows us to take into acce
on the coarse grids the deterministic information computed on the fine ones and thu
minimize the statistically modeled part at each level of resolution. A great improveme
is obtained on the quality of the results with the use of this model, and its behavior shc
good agreement with the subgrid terms extracted from filtered Direct Simulations.

Globally, the algorithm is shown to significantly reduce the CPU times, with a savin
of up to 80% for the test case considered in the paper, and without any significant los:
accuracy on the results when the multilevel closure is used. The method has been ass
with up to four levels, and it has been demonstrated that it can correctly account for v
fine phenomena, without having to solve them with much accuracy.
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